
Ten Simple Rules for Writing Dockerfiles for Reproducible
Data Science
Daniel Nüst 1 *, Vanessa Sochat 2 , Ben Marwick 3 , Stephen J. Eglen 4 , Tim
Head 5 , Tony Hirst 6 , Benjamin D. Evans 7

1 Institute for Geoinformatics, University of Münster, Münster, Germany
2 Stanford Research Computing Center, Stanford University, Stanford, California,

USA
3 Department of Anthropology, University of Washington, Seattle, Washington, USA
4 Department of Applied Mathematics and Theoretical Physics, University of

Cambridge, Cambridge, Cambridgeshire, Great Britain
5 Wild Tree Tech, Zurich, Switzerland
6 Department of Computing and Communications, The Open University, Great

Britain
7 School of Psychological Science, University of Bristol, Bristol, Great Britain

* Corresponding author: daniel.nuest@uni-muenster.de

Abstract
Computational science has been greatly improved by the use of containers for packaging
software and data dependencies. In a scholarly context, the main drivers for using these
containers are transparency and support of reproducibility; in turn, a workflow’s
reproducibility can be greatly affected by the choices that are made with respect to
building containers. In many cases, the build process for the container’s image is
created from instructions provided in a Dockerfile format. In support of this
approach, we present a set of rules to help researchers write understandable
Dockerfiles for typical data science workflows. By following the rules in this article,
researchers can create containers suitable for sharing with fellow scientists, for including
in scholarly communication such as education or scientific papers, and for effective and
sustainable personal workflows.

Author summary
Computers and algorithms are ubiquitous in research. Therefore, defining the
computing environment, i.e., the body of all software used directly or indirectly by a
researcher, is important, because it allows other researchers to recreate the environment
to understand, inspect, and reproduce an analysis. A helpful abstraction for capturing
the computing environment is a container, whereby a container is created from a set of
instructions in a recipe. For the most common containerisation software, Docker, this
recipe is called a Dockerfile. We believe that in a scientific context, researchers should
follow specific practices for writing a Dockerfile. These practices might be somewhat
different from the practices of generic software developers in that researchers often need
to focus on transparency and understandability rather than performance considerations.
The rules presented here are intended to help researchers, especially newcomers to
containerisation, leverage containers for open and effective scholarly communication and

November 10, 2020 1/24

collaboration while avoiding the pitfalls that are especially irksome in a research
lifecycle. The recommendations cover a deliberate approach to Dockerfile creation,
formatting and style, documentation, and habits for using containers.

Introduction 1

Computing infrastructure has advanced to the point where not only can we share data 2

underlying research articles, but we can also share the code that processes these data. 3

The sharing of code files is enabled by collaboration platforms such as GitHub or 4

GitLab and is becoming an increasingly common practice. The sharing of the 5

computing environment is enabled by containerisation, which allows for documenting 6

and sharing entire workflows in a comprehensive way. Importantly, this sharing of 7

computational assets is paramount for increasing the reproducibility of computational 8

research. While papers based on the traditional journal article format can share 9

extensive details about the research, computational research is often far too complicated 10

to be effectively disseminated in this format [1]. Approaches such as containerisation 11

are needed to support computational research, or when analysing or visualising data, 12

because a paper’s actual contribution to knowledge includes the full computing 13

environment that produced a result [2]. 14

Containerisation helps provide instructions for packaging the building blocks of 15

computer-based research (i.e., code, data, documentation, and the computing 16

environment). Specifically, containers are built from plain text files that represent a 17

human- and machine-readable recipe for creating the computing environment and 18

interacting with data. By providing this recipe, authors of scientific articles greatly 19

improve their work’s level of documentation, transparency, and reusability. This is an 20

important part of common practice for scientific computing [3,4]. An overall goal of 21

these practices is to ensure that both the author and others are able to reproduce and 22

extend an analysis workflow. The containers built from these recipes are portable 23

encapsulated snapshots of a specific computing environment that are both more 24

lightweight and transparent than virtual machines. Such containers have been 25

demonstrated for capturing scientific notebooks [5] and reproducible workflows [6]. 26

While several tutorials exist on how to use containers for reproducible research 27

([7–11] and Gruening and colleagues [12] give very helpful recommendations for 28

packaging reusable software in a container), there is no detailed manual for how to write 29

the actual instructions to create the containers for computational research besides 30

generic best practice guides [13,14]. Here we introduce a set of recommendations for 31

producing container configurations in the context of data science workflows using the 32

popular Dockerfile format, summarised in Fig 1. 33

Prerequisites & scope 34

To start with, we assume the existence of a scripted scientific workflow, i.e. you can, at 35

least at a certain point in time, execute the full process with a fixed set of commands, 36

for example make prepare_data followed by Rscript analysis.R, or only python3 37

my-workflow.py. To maximise reach, we assume that containers, which you eventually 38

share with others, can only run open source software; tools like Mathematica and 39

Matlab are out of scope for this example. A workflow that does not support scripted 40

execution is also out of scope for reproducible research, as it does not fit well with 41

containerisation. Furthermore, workflows interacting with many petabytes of data and 42

executed in high-performance computing (HPC) infrastructures are out of scope. Using 43

such HPC job managers or cloud infrastructures would require a collection of “Ten 44

November 10, 2020 2/24

https://github.com
https://gitlab.com

Fig 1. Summary of the 10 simple rules for writing Dockerfiles for reproducible data
science.

Simple Rules” articles in their own right. For the HPC use case, we encourage the 45

reader to look at Singularity [15]. For this article, we focus on workflows that typically 46

run on single machine, e.g., a researcher’s own laptop computer or a virtual server. The 47

reader might scope the data requirement to under a terabyte, and compute requirement 48

to a machine with 16 cores running over the weekend. 49

Although it is outside the scope of this article, we point readers to docker-compose 50

[16] in the case where one might need container orchestration for multiple applications, 51

e.g., web servers, databases, and worker containers. A docker-compose.yml 52

configuration file allows for defining mounts, environment variables, and exposed ports 53

and helps users stick to “one purpose per container”, which often means one process 54

running in the container, and to combine existing stable building blocks instead of 55

bespoke massive containers for specific purposes. 56

Because “the number of unique research environments approximates the number of 57

researchers” [17], sticking to conventions helps every researcher to understand, modify, 58

and eventually write container recipes suitable for their needs. Even if they are not sure 59

how the underlying technology actually works, researchers should leverage 60

containerisation following good practices. The practices that are to be discussed in this 61

article are strongly related to software engineering in general and research software 62

engineering in particular, which is concerned with quality, training, and recognition of 63

November 10, 2020 3/24

software in science [18]. We encourage you to reach out to your local or national 64

community of research software engineers (see list of organisations) if you have 65

questions on software development in research that go beyond the rules of this work. 66

While many different container technologies exist, this article focuses on Docker [19]. 67

Docker is a highly suitable tool for reproducible research (e.g., [20]), and our 68

observations indicate it is the most widely used container technology in academic data 69

science. The goal of this article is to guide you as you write a Dockerfile, the file 70

format used to create Docker container images. The rules will help you ensure that the 71

Dockerfile allows for interactive development as well as for reaching the higher goals 72

of reproducibility and preservation of knowledge. Such practices do not generally appear 73

in generic containerisation tutorials and they are rarely found in the Dockerfiles 74

published as part of software projects that are often used as templates by novices. The 75

differences between a helpful, stable Dockerfile and one that is misleading, prone to 76

failure, and full of potential obstacles are not obvious, especially for researchers who do 77

not have extensive software development experience or formal training. By committing 78

to this article’s rules, one can ensure that their workflows are reproducible and reusable, 79

that computing environments are understandable by others, and that researchers have 80

the opportunity to collaborate effectively. Applying these rules should not be triggered 81

by the publication of a finished project but should instead be weaved into day-to-day 82

habits (cf. thoughts on openness as an afterthought by [21] and on computational 83

reproducibility by [2]). 84

Docker and Dockerfiles 85

Docker [19] is a container technology that has been widely adopted and is supported on 86

many platforms, and it has become highly useful for research. Containers are distinct 87

from virtual machines or hypervisors, as they do not emulate hardware or operating 88

system kernels and hence do not require the same system resources. Several solutions 89

for facilitating reproducible research are built on top of containers [17,22–25], but these 90

solutions intentionally hide most of the complexity from the researcher. 91

To create Docker containers for specific workflows, we write text files that follow a 92

particular format called Dockerfile [26]. A Dockerfile is a machine- and 93

human-readable recipe, comparable to a Makefile [27], for building images. Here, 94

images are executable files that include the application, e.g., the programming language 95

interpreter needed to run a workflow, and the system libraries required by an 96

application to run. Thus, a Dockerfile consists of a sequence of instructions to copy 97

files and install software. Each instruction adds a layer to the image, which can be 98

cached across image builds for minimising build and download times. Once an image is 99

built or downloaded, it is then launched as a running instance known as a container. 100

The images have a main executable exposed as an “entrypoint” that is started when 101

they are run as stateful containers. Further, containers can be modified, stopped, 102

restarted, and purged. 103

A visual analogy for building and running a container is provided in Fig 2. Akin to 104

compiling source code for a programming language, creating a container also starts with 105

a plain text file (Dockerfile), which provides instructions for building an image. 106

Similar to using a compiled binary file to launch a program, the image is then run to 107

create a container instance. See Listing 1 for a full Dockerfile, which we will refer to 108

throughout this article. 109

While Docker was the original technology to support the Dockerfile format, other 110

container technologies now offer support for it, including podman/buildah supported by 111

RedHat, kaniko, img, and buildkit. The container software Singularity [15], which is 112

optimised for scientific computing and the security needs of HPC environments, uses its 113

November 10, 2020 4/24

https://en.wikipedia.org/wiki/Research_software_engineering
https://podman.io/
https://github.com/containers/buildah
https://github.com/GoogleContainerTools/kaniko
https://github.com/genuinetools/img
https://github.com/moby/buildkit

own format, called the Singularity recipe, but it can also import and run Docker images. 114

The rules here are, to some extent, transferable to Singularity recipes. 115

While some may argue against publishing reproducibly, e.g., due to a lack of time 116

and incentives, a reluctance to share (cf. [28]), and the substantial technical challenges 117

involved in maintaining software and documentation, it should become increasingly 118

straightforward for the average researcher to provide computational environment 119

support for their publication in the form of a Dockerfile, a pre-built Docker image, or 120

another type of container. If a researcher can find and create containers or write a 121

Dockerfile to address their most common use cases, then, arguably, sharing it would 122

not make for extra work after this initial setup (cf. README.md of [29]). In fact, the 123

Dockerfile itself represents powerful documentation to show from where data and 124

code were derived, i.e., downloaded or installed, and, consequently, where a third party 125

might obtain the data again. 126
127

Listing 1. Dockerfile full example. The Dockerfile and all other files are published
in the full-demo example, see Section Examples; the image
docker.io/nuest/datascidockerfiles:1.0.0 is a ready-to-use build of this example.

128
FROM docker . io / rocker / verse : 3 . 6 . 2 129

130
INSTALL BASE SOFTWARE # 131
Install Java , needed for package rJava 132
RUN apt - get update && \ 133

apt - get install - y default - jdk && \ 134
rm - rf / var / lib / apt / lists /∗ 135

136
INSTALL WORKFLOW TOOLS # 137
Install system de pen den cie s for R packages 138
RUN apt - get update && \ 139

apt - get install - y \ 140
needed for RNetCDF , found via https :// sysreqs . r - hub . io / pkg / RNetCDF 141
libnetcdf - dev libudunits2 - dev \ 142
needed for git2r : 143
libgit2 - dev 144

145
Install R packages , based on https :// github . com / rocker - org / geospatial / blob / 146

master / Dockerfile 147
RUN install2 . r - - error \ 148

RC olo rBr ewe r \ 149
RNetCDF \ 150
git2r \ 151
rJava 152

153
WORKDIR / tmp 154

155
Install Python tools and their system d epe nde nci es 156
RUN apt - get update && \ 157

apt - get install - y python - pip && \ 158
rm - rf / var / lib / apt / lists /∗ 159

COPY r equ ire men ts . txt re qui rem ent s . txt 160
RUN pip install - r req ui rem ent s . txt 161

162
Download superduper image converter 163
RUN wget https : / / downloads . apache . org / pdfbox / 2 . 0 . 1 9 / pdfbox - app - 2 . 0 . 1 9 . jar 164

165
ADD MY OWN SCRIPTS # 166
Add workflow scripts 167
WORKDIR / work 168
COPY myscript . sh myscript . sh 169
COPY analysis . py analysis . py 170
COPY plots . R plots . R 171

172
Configure workflow 173
ENV DATA_SIZE 42 174

175
Uncomment the following lines to execute p r e p r o c e s s i n g tasks during build 176
RUN python analysis . py 177
RUN Rscript plots . R 178

179
WORKFLOW CONTAINER FEATURE # 180

November 10, 2020 5/24

CMD from base image used for development , uncomment the following lines to 181
have a " run workflow only " image 182
CMD ["./ myscript . sh "] 183

184
Usage i nst ruc ti ons # 185
Build the images with 186
> docker build - - tag d a t a s c i d o c k e r f i l e s :1.0.0 . 187
Run the image i n t e r a c t i v e l y with RStudio , open it on http :// localhost / 188
> docker run - it - p 80:8787 - e PASSWORD = ten - - volume $ (pwd) / input :/ input 189

d a t a s c i d o c k e r f i l e s :1.0.0 190
Run the workflow : 191
> docker run - it - - name gwf d a t a s c i d o c k e r f i l e s :1.0.0 / work / myscript . sh 192
Extract the data : 193
> docker cp gwf :/ output / ./ outputData 194
Extract the figures : 195
> docker cp gwf :/ work / figures / ./ figures 196

Rule 1: Use available tools 197

Rule 1 could informally be described as “Don’t bother to write a Dockerfile!”. Writing a 198

Dockerfile from scratch can be difficult, and even experts sometimes take shortcuts. 199

A good initial strategy is to look at tools that can help generate a Dockerfile for you. 200

The developers of such tools have likely thought about and implemented good practices, 201

and they may even have incorporated newer practices when reapplied at a later point in 202

time. Therefore, the most important rule is to apply a multi-step process to creating a 203

Dockerfile for your specific use case. 204

First, you want to determine whether there is an existing image that you can use; if 205

so, you want to be able to use it and add the instructions for doing so to your workflow 206

documentation. As an example, you might be doing some kind of interactive 207

development. For interactive development environments such as notebooks and 208

development servers or databases, you can readily find images that come installed with 209

all the software that you need. You can look for information about images in (a) the 210

documentation of the software you intend to use; (b) the Docker image registry Docker 211

Hub; or (c) the source code projects of the software being used, as many developers 212

today rely on containers for development, testing, and teaching. 213

Second, if there is no suitable pre-existing image for your needs, you might next look 214

to well-maintained tools to help with Dockerfile generation. These tools can add 215

required software packages to an existing image without you having to manually write a 216

Dockerfile at all. “Well-maintained” not only refers to the tool’s own stability and 217

usability but also indicates that suitable base images are used, typically from the official 218

Docker library [30], to ensure that the container has the most recent security fixes for 219

the operating system in question. See the next section “Tools for container generation” 220

for details. 221

Third, if these tools do not meet your needs, you may want to write your own 222

Dockerfile. In this case, follow the remaining rules. 223

Tools for container generation 224

repo2docker [25] is a tool maintained by Project Jupyter that can help to transform a 225

source code or data repository, e.g., GitHub, GitLab, or Zenodo, into a container. The 226

tool relies on common configuration files for defining software dependencies and 227

versions, and it supports a few more special files; see the supported configuration files. 228

As an example, we might install jupyter-repo2docker and then run it against a 229

repository with a requirements.txt file, an indication of being a Python workflow 230

with dependencies on the Python Package Index (PyPI), using the following command: 231

November 10, 2020 6/24

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://jupyter.org/
https://repo2docker.readthedocs.io/en/latest/config_files.html
https://pypi.org/

jupyter-repo2docker https://github.com/norvig/pytudes

The resulting container image installs the dependencies listed in the requirements 232

file, and it provides an entrypoint to run a notebook server to interact with any existing 233

workflows in the repository. Since repo2docker is used within MyBinder.org, if you 234

make sure your workflow is “Binder-ready,” you and others can also obtain an online 235

workspace with a single click. However, one precaution to consider is that the default 236

command above will create a home for the current user, meaning that the container 237

itself would not be ideal to share; instead, any researcher interested in interacting with 238

the code inside should run repo2docker themselves and create their own container. 239

Because repo2docker is deterministic, the environments are the same (see Rule 5 for 240

ensuring the same software versions). 241

Additional tools to assist with writing Dockerfiles include containerit [31] and 242

dockta [32]. containerit automates the generation of a standalone Dockerfile for 243

workflows in R. This utility can provide a starting point for users unfamiliar with 244

writing a Dockerfile, or it can, together with other R packages, provide a full image 245

creation and execution process without having to leave an R session. dockta supports 246

multiple programming languages and configurations files, just as repo2docker does, but 247

it attempts to create a readable Dockerfile compatible with plain Docker and to 248

improve user experience by cleverly adjusting instructions to reduce build time. While 249

perhaps more useful for fine-tuning, linters can also be helpful when writing Dockerfiles, 250

by catching errors or non-recommended formulations (see Rule 10). 251

Tools for templating 252

It is likely that over time you will work on projects and develop images that are similar 253

in nature to each other. To avoid constantly repeating yourself, you should consider 254

adopting a standard workflow that will give you a quick start for a new project. As an 255

example, cookie cutter templates [33] or community templates (e.g., [34]) can provide 256

the required structure and files (e.g., for documentation, continuous integration (CI), 257

and licenses), for getting started. If you decide to build your own cookie cutter 258

template, consider collaborating with your community during development of the 259

standard to ensure it will be useful to others. 260

Part of your project template should be a protocol for publishing the Dockerfile 261

and even exporting the image to a suitable location, e.g., a container registry or data 262

repository, taking into consideration how your workflow can receive a DOI for citation. 263

A template is preferable to your own set of base images because of the maintenance 264

efforts the base images require. Therefore, instead of building your own independent 265

solution, consider contributing to existing suites of images (see Rule 2) and improving 266

these for your needs. 267

For any tool that you use, be sure to look at documentation for usage and 268

configuration options, and look for options to add metadata (e.g., labels see Rule 4). 269

Rule 2: Build upon existing images 270

Many pre-built community and developer contributed Docker images are publically 271

available for anyone to pull, run and extend, without having to replicate the image 272

construction process. However, a good understanding of how base images and image 273

tags work is crucial, as the image and tag that you choose has important implications 274

for your derived images and containers. It is good practice to use base images that are 275

maintained by the Docker library, so called “official images” [35], which benefit from a 276

review for best practices and vulnerability scanning [13]. You can identify these images 277

November 10, 2020 7/24

https://mybinder.org/

by the missing user portion of the image name, which comes before the /, e.g., r-base 278

or python. However, these images only provide basic programming languages or very 279

widely used software, so you will likely use images maintained by organisations or fellow 280

researchers. 281

While some organisations can be trusted to update images with security fixes (see 282

list below), for most individual accounts that provide ready-to-use images, it is likely 283

that these will not be updated regularly. Further, it’s even possible that an image or a 284

Dockerfile could disappear, or an image could be published with malicious intent 285

(though we have not heard of any such case in academia). Therefore, for security, 286

transparency, and reproducibility, you should only use images where you have access to 287

the Dockerfile. In case a repository goes away, we suggest that you save a copy of the 288

Dockerfile within your project (see Rule 7). 289

The following list is a selection of communities that produce widely used, regularly 290

updated images, including ready-to-use images with preinstalled collections of software 291

configured to work out of the box. Do take advantage of such images, especially for 292

complex software environments, e.g., machine learning tool stacks, or a specific BLAS 293

library. 294

• Rocker for R and RStudio images [20] 295

• Bioconductor Docker images for bioinformatics with R 296

• NeuroDebian images for neuroscience [36] 297

• Jupyter Docker Stacks for Notebook-based computing 298

• Taverna Server for running Taverna workflows 299

For example, here is how we would use a base image verse, which provides the 300

popular Tidyverse suite of packages [37], with R version 3.5.2 from the rocker 301

organisation on Docker Hub (docker.io, which is the default and can be omitted). 302

FROM docker.io/rocker/verse:3.6.2

Use version-specific tags 303

Images have tags associated with them, and these tags have specific meanings, e.g., a 304

semantic version indicator such as 3.7 or dev, or variants like slim that attempt to 305

reduce image size. Tags are defined at the time of image build and appear in the image 306

name after the : when you use an image, e.g., python:3.7. By convention a missing 307

tag is assumed to be the word latest, which gives you the latest updates but is also a 308

moving target for your computing environment that can break your workflow. Note that 309

a version tag means that the tagged software is frozen, but it does not mean that the 310

image will not change, as backwards compatible fixes (cf. semantic versioning, [38]), e.g., 311

version 1.2.3 that fixes a security problem in version 1.2.2 or updates to an 312

underlying system library, would be published to the parent tag 1.2. 313

For data science workflows, you should always rely on version-specific image tags, 314

both for base images that you use, and for images that you build yourself and then run 315

(see usage instructions in Listing 1 for an example of the --tag parameter of docker 316

build). When keeping different versions (tags) available, it is good practice to publish 317

an image in an image registry. For details, we refer you to the documentation on 318

automated builds, see Docker Hub Builds or GitLab’s Container Registry as well as CI 319

services such as GitHub actions, or CircleCI that can help you get started. Do not 320

docker push a locally built image, because that counteracts the considerations outlined 321

above. If a pre-built image is provided in a public image registry, do not forget to direct 322

the user to it in your documentation, e.g., in the README file or in an article. 323

November 10, 2020 8/24

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://www.rocker-project.org/
https://bioconductor.org/help/docker/
https://hub.docker.com/_/neurodebian
https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html
https://hub.docker.com/r/taverna/taverna-server
https://docs.docker.com/docker-hub/builds/
https://docs.gitlab.com/ee/user/packages/container_registry/index.html#build-and-push-images
https://github.com/actions/starter-workflows/tree/master/ci
https://circleci.com/orbs/registry/orb/circleci/docker#commands-build

Rule 3: Format for clarity 324

First, it is good practice to think of the Dockerfile as a human- and machine-readable 325

file. This means that you should use indentation, new lines, and comments to make 326

your Dockerfile well documented and readable. Specifically, carefully indent 327

commands and their arguments to make clear what belongs together, especially when 328

connecting multiple commands in a RUN instruction with &&. Use \ at the end of a line 329

to break a single command into multiple lines. This will ensure that no single line gets 330

too long to comfortably read. Content spread across more and shorter lines also 331

improves readability of changes in version control systems. Further, use long versions of 332

parameters for readability (e.g., --input instead of -i). When you need to change a 333

directory, use WORKDIR, because it not only creates the directory if it does not exist but 334

also persists the change across multiple RUN instructions. 335

Second, clarity of the steps within a Dockerfile is most important, and if it requires 336

verbosity or adds to the final image size, that is an acceptable tradeoff. For example, if 337

your container uses a script to run a complex install routine, instead of removing it from 338

the container upon completion (a practice commonly seen in production Dockerfiles 339

aiming at small image sizes, cf. [12]), you should keep the script in the container for a 340

future user to inspect; the script size is negligible compared to the image size. One 341

common pattern you will encounter is a single and very lengthy RUN instruction 342

chaining multiple commands to install software and clean up afterwards. For example 343

(a) the instruction updates the database of available packages, installs a piece of 344

software from a package repository, and purges the cache of the package manager, or (b) 345

the instruction downloads a software’s source archive, unpacks it, builds and installs the 346

software, and then removes the downloaded archive and all temporary files. Although 347

this pattern creates instructions that may be hard to read, it is very common and can 348

even increase clarity within the image file system because installation and build 349

artifacts are gone. In general, if your container is mostly software dependencies, you 350

should not need to worry about image size because (a) your data is likely to have much 351

larger storage requirements, and (b) transparency and inspectability outweigh storage 352

concerns in data science. If you really need to reduce the size, you may look into using 353

multiple containers (cf. [12]) or multi-stage builds [39]. 354

Depending on the programming language used, your project may already contain 355

files to manage dependencies, and you may use a package manager to control this 356

aspect of the computing environment. This is a very good practice and helpful, though 357

you should consider the externalisation of content to outside of the Dockerfile (see 358

Rule 7). Often, a single long Dockerfile with sections and helpful comments can be 359

more understandable than a collection of separate files. 360

Generally, aim to design the RUN instructions so that each performs one scoped 361

action, e.g., download, compile, and install one tool. This makes the lines of your 362

Dockerfile a well-documented recipe for the user as well as a machine. Each 363

instruction will result in a new layer, and reasonably grouped changes increase 364

readability of the Dockerfile and facilitate inspection of the image, e.g., with tools like 365

dive [40]. Convoluted RUN instructions can be acceptable to reduce the number of layers, 366

but careful layout and consistent formatting should be applied. 367

Although you will find Dockerfiles that use build-time variables to dynamically 368

change parameters at build time, such a customisation option reduces clarity for data 369

science workflows. 370

November 10, 2020 9/24

https://docs.docker.com/engine/reference/commandline/build/#set-build-time-variables---build-arg

Rule 4: Document within the Dockerfile 371

Explain in comments 372

As you are writing the Dockerfile, be mindful of how other people (including future 373

you!) will read it and why. Are your choices and commands being executed clearly, or 374

are further comments warranted? To assist others in making sense of your Dockerfile, 375

you can add comments that include links to online forums, code repository issues, or 376

version control commit messages to give context for your specific decisions. For example 377

this Dockerfile by Kaggle does a good job of explaining the reasoning behind the 378

contained instructions. If you copy instructions from another Dockerfile, acknowledge 379

the source in a comment. Also, it can be helpful to include comments about commands 380

that did not work so you do not repeat past mistakes. Further, if you find that you need 381

to remember an undocumented step, that is an indication this step should be 382

documented in the Dockerfile. All instructions can be grouped starting with a short 383

comment, which also makes it easier to spot changes if your Dockerfile is managed in 384

some version control system (see Rule 6). Listing 2 shows a selection of typical kinds of 385

comments that are useful to include in a Dockerfile. 386

Listing 2. Partial Dockerfile with examples for helpful comments.
. . .

apt - get install specific version , use ’ apt - cache madison < pkg > ’
to see available versions
RUN apt - get install python3 - pandas =0.23.3+ dfsg - 4 ubuntu1

install required R packages ; before log the used repository
for better provenance in the build log
RUN R - e ’ getOption (" repos ") ’ && \

install2 . r \
fortunes \
here

this library must be installed from source to get version newer
than in apt sources
RUN git clone http : / / url . of / repo && \

cd repo && \
make build && \
make install

387

Add metadata as labels 388

Docker automatically captures useful information in the image metadata, such as the 389

version of Docker used for building the image. The LABEL instruction can add custom 390

metadata to images. You can view all labels and other image metadata with docker 391

inspect command. Listing 3 shows the most relevant ones for data science workflows. 392

Labels serve as structured metadata that can be leveraged by services, e.g., 393

https://microbadger.com/labels. For example, software versions of containerised 394

applications (cf. [12]), licenses, and maintainer contact information are commonly seen, 395

and they are very useful if a Dockerfile is discovered out of context. Regarding 396

licensing information, this should include the license of your own code and could point 397

to a LICENSE file within the image (cf. [12]). While you can add arbitrarily complex 398

information with labels, for data science scenarios the user-facing documentation is 399

much more important. Relevant metadata that might be utilised with future tools 400

include global identifiers such as ORCID identifiers, DOIs of the research compendium 401

(cf. https://research-compendium.science), e.g., reserved on Zenodo, or a funding 402

agency’s grant number. You can use the ARG instruction to pass variables at build time, 403

for example to pass values into labels, such as the current date or version control 404

revision. However, a script or Makefile might be required so that you do not forget 405

November 10, 2020 10/24

https://github.com/Kaggle/docker-rstats/blob/master/Dockerfile
https://docs.docker.com/engine/reference/builder/#label
https://docs.docker.com/engine/reference/commandline/inspect/
https://docs.docker.com/engine/reference/commandline/inspect/
https://docs.docker.com/engine/reference/commandline/inspect/
https://orcid.org/
https://research-compendium.science
https://help.zenodo.org/
https://docs.docker.com/engine/reference/builder/#arg

that you set the argument, or how you set it (see Rule 10). 406

The Open Container Initiative (OCI) Image Format Specification provides some 407

common label keys (see the “Annotations” section in [41]) to help standardise field 408

names across container tools, as shown below. Some keys hold specific content, e.g., 409

org.opencontainers.image.documentation is a URL as character string pointing to 410

documentation on the image, and org.opencontainers.image.licenses is the SPDX 411

license identifier. You may also commonly find labels in the deprecated 412

org.label-schema-specification format, e.g., org.label-schema.description. 413

However, we encourage the use of the OCI schema in all new and unlabelled projects. 414

Listing 3. Partial Dockerfile with commonly used labels; note the line breaks within
the values (using the \ character), which were added to limit line length, are not
preceded by a space character, as this space would appear in the value, whereas the line
breaks between keys and values are separated by whitespace for readability.
. . .

LABEL maintainer=" D . N ü st < daniel . nuest@uni - muenster . de > " \
org . o p e n c o n t a i n e r s . image . authors=" N ü st (daniel . nuest@uni - muenster . de) , \

Sochat , Marwick , Eglen , Head , Hirst , and Evans " \
org . o p e n c o n t a i n e r s . image . url=" \

https :// github . com / nuest / ten - simple - rules - dockerfiles " \
org . o p e n c o n t a i n e r s . image . d o c u m e n t a t i o n=" https :// nuest . github . io /\

ten - simple - rules - dockerfiles / ten - simple - rules - dockerfiles . pdf " \
org . o p e n c o n t a i n e r s . image . version=" 1.0.0 "

LABEL org . o p e n c o n t a i n e r s . image . vendor=" Ten Simple Institute , Uni of Rules " \
org . o p e n c o n t a i n e r s . image . description=" R epr odu ci ble workflow image " \
org . o p e n c o n t a i n e r s . image . licenses=" Apache - 2.0 "

LABEL edu . science . data . group . project=" Find out something (Grant #123456) " \
edu . science . data . group . name=" Data Science Lab " \
author . orcid=" 0000 - 0002 - 1825 - 0097 "

415

Define versions, parameters, and paths once 416

The ENV instruction in a Dockerfile allows for defining environment variables. These 417

variables persist inside the container and can be useful, for example, for (a) setting 418

software versions or paths and reusing them across multiple instructions to avoid 419

mistakes, (b) specifying metadata intended to be discovered by installed libraries or 420

software, or (c) adding binaries to the path (PATH) or library path (LD_LIBRARY_PATH). 421

You should be careful to distinguish these environment variables from those that might 422

vary and be required at runtime. Listing 4 shows some examples. For runtime 423

environment variables, either to set a new variable or override one set in the container, 424

you can use the --env parameter of docker run (see Listings 4 and 6). 425

November 10, 2020 11/24

https://spdx.org/licenses/
https://spdx.org/licenses/
https://spdx.org/licenses/
http://label-schema.org/rc1/
https://docs.docker.com/engine/reference/builder/#env

Listing 4. Partial Dockerfile showing usage of environment variables with the ENV
instruction.
. . .

Define number of cores used by P o w e r f u l A l g o r i t h m
ENV P O W E R _ A L G _ C O R E S 2

Install UsefulSoft tool in specific version from source
ENV U S E F U L S O F T _ V E R S I O N =1.0.0 \

U S E F U L S O F T _ I N S T A L L D I R=/workspace / bin

RUN wget http : / / usesoft . url / u s e f u l _ s o f t w a r e / $ U S E F U L S O F T _ V E R S I O N / useful -
$ U S E F U L S O F T _ V E R S I O N . zip && \

unzip useful - $ U S E F U L S O F T _ V E R S I O N . zip - d useful - src && \
cd useful - src && \
bash install . sh - - target $ U S E F U L S O F T _ I N S T A L L D I R && \
cd . . && \
rm - r useful - src useful - $ U S E F U L S O F T _ V E R S I O N . zip

Put UsefulSoft tool on the path for subsequent i nst ruc tio ns
ENV PATH $PATH : $ U S E F U L S O F T _ I N S T A L L D I R

Usage i nst ru cti ons
[...]
Run the image (defining the number of cores used) :
> docker run - - it - - env P O W E R _ A L G _ C O R E S 32 my_workflow

426

Include usage instructions 427

It is often helpful to provide usage instructions, i.e., how to docker build and docker 428

run the image, within the Dockerfile, either at the top or bottom where the reader is 429

likely to find them. Such documentation is especially relevant if bind mounts, specific 430

names, or ports are important for using the container; see, for example, the final lines of 431

Listing 1. These instructions are not limited to docker <command> but include the 432

usage of bespoke scripts, a Makefile, or docker-compose (see Rule 8 and Rule 10). 433

Following a common coding aphorism, we might say “A Dockerfile you wrote three 434

months ago may just as well have been written by someone else”. Thus, usage 435

instructions help others, because they quickly get them running your workflow and 436

interacting with the container in the intended way without reading all of the 437

instructions (a “tl;dr”-kind of usage). Usage instructions also provide a de facto way of 438

testing that your container works in a way that others can try out. The Dockerfile 439

alongside your documentation strategy is a demonstration of your careful work habits 440

and good intentions for transparency and computational reproducibility. 441

Rule 5: Specify software versions 442

The reproducibility of your Dockerfile heavily depends on how well you define the 443

versions of software to be installed in the image. The more specifically you can define 444

them the better, because using the desired version leads to reproducible builds. The 445

practice of specifying versions of software is called version pinning (e.g., on apt: 446

https://blog.backslasher.net/my-pinning-guidelines.html). For stable workflows in a 447

scientific context, it is generally advised to freeze the computing environment explicitly 448

and not rely on the “current” or “latest” software, which is a moving target. 449

System libraries 450

System library versions can largely come from the base image tag that you choose to 451

use, e.g., ubuntu:18.04, because the operating system’s software repositories are very 452

unlikely to introduce breaking changes but will predominantly fix errors with newer 453

November 10, 2020 12/24

https://en.wikipedia.org/wiki/Wikipedia:Too_long;_didn%27t_read

versions. However, you can also install specific versions of system packages with the 454

respective package manager. For example, you might want to demonstrate a bug, 455

prevent a bug in an updated version, or pin a working version if you suspect an update 456

could lead to a problem. Generally, system libraries are more stable than software 457

modules supporting analysis scripts, but in some cases they can be highly relevant to 458

your workflow. Installing from source is a useful way to install very specific versions, 459

but it comes at the cost of longer build time and more complex instructions. Here are 460

some examples of terminal commands that will list the currently installed versions of 461

software on your system: 462

• Debian/Ubuntu: dpkg --list 463

• Alpine: apk -vv info|sort 464

• CentOS: yum list installed or rpm -qa 465

When you install several system libraries, it is good practice to add comments about 466

why the dependencies are needed (see Listing 1). This way, if a piece of software is 467

removed from the container, it will be easier to remove the system dependencies that 468

are no longer needed, thereby reducing maintenance overhead: you will not 469

unnecessarily fix problems with a library that is no longer needed or include 470

long-running installations. A test provided via a HEALTHCHECK, can further ensure 471

proper functioning of your container. 472

Version Control 473

Software can often be installed directly from a version controlled repository (e.g., 474

GitHub, GitLab, or Mercurial). It’s recommended to checkout a specific version, tag, or 475

commit to ensure pinning a version for the repository. For example, here is how to clone 476

a specific release tag (v3.6.1) of the Singularity container software: 477

RUN git clone -b v3.6.1 https://github.com/hpcng/singularity

In the case that you want to clone and checkout a specific commit, you can use the 478

checkout command. 479

RUN git clone https://github.com/hpcng/singularity && \
cd singularity && \
git checkout 8a92cf127a49118cab61579bb36b3d51ba5c6434 && \
install steps go here

Extension packages and programming language modules 480

If you need to install packages or dependencies for a specific language, package 481

managers are a good option. Package managers generally provide reliable mirrors or 482

endpoints to download software, many packages are tested before release, and, most 483

importantly, they provide access to specific versions. Most package managers have a 484

command line interface that can be used from RUN commands in your Dockerfile, 485

along with various flavours of “freeze” commands that can output a text file listing all 486

software packages and versions (cf. https: 487

//markwoodbridge.com/2017/03/05/jupyter-reproducible-science.html cited by 488

[5]). The biggest risk with using package managers with respect to a Dockerfile is 489

outsourcing configuration. As an example, here are configuration files supported by 490

commonly used languages in scientific programming: 491

• Python: requirements.txt (pip tool, [42]), environment.yml (Conda, [43]) 492

November 10, 2020 13/24

https://docs.docker.com/engine/reference/builder/#healthcheck
https://markwoodbridge.com/2017/03/05/jupyter-reproducible-science.html
https://markwoodbridge.com/2017/03/05/jupyter-reproducible-science.html
https://markwoodbridge.com/2017/03/05/jupyter-reproducible-science.html

• R: DESCRIPTION file format [44] and r (“little R”, [45]) 493

• JavaScript: package.json of npm [46] 494

• Julia: Project.toml and Manifest.toml [47] 495

In some cases (e.g., Conda) the package manager is also able to make decisions 496

about what versions to install, which is likely to lead to a non-reproducible build. For 497

this reason, it is necessary to pin the dependency versions. In the case of having few 498

packages, it may be simplest to write the install steps and versions directly into the 499

Dockerfile (also for clarity, see Rule 3): 500

RUN pip install \
geopy==1.20.0 \
uszipcode==0.2.2

Alternatively, versions may be specified in a separate dependency file (e.g., 501

requirements.txt or environment.yml) and COPYied to the image for installation: 502

COPY requirements.txt .
RUN pip install -r requirements.txt

This modularisation may reduce readability, but provides more flexibility in 503

facilitating different ways of building a reproducible environment, provided the 504

dependency file is under version control in the same repository (see Rule 6). You can 505

also use package managers to install software from source code COPYied into the image 506

(see Rule 7). Finally, you can use many package managers to install software from 507

source obtained from external code management repositories, e.g., installing a tool from 508

a specific version tag or commit hash. Be aware of the risk that such installations may 509

later fail, especially when the external repositories are out of your control. However, 510

these concerns can be mitigated by running the installation command with the full URL 511

(including the specific version tag or commit hash), which is helpful in troubleshooting if 512

problems arise. The version pinning capabilities of these file formats and package 513

managers are described in their respective documentation. 514

As a final note on software installation, you should be aware of the USER instruction 515

in a Dockerfile and how your base image might change the user for particular 516

instructions, restricting which commands can be run within the container. It is common 517

to use images with the default user root, which is required for installing system 518

dependencies. However you may encounter base images running as a non-root user (e.g., 519

in the Jupyter and Rocker image stacks) in order to avoid permission problems when 520

mounting files into the container, especially for “output” files (see Rule 7). We 521

recommend ensuring that the image works without specifying any users, and, if your 522

image deviates from that, we suggest you document it precisely. 523

Rule 6: Use version control 524

As plain text files, Dockerfiles are well suited for use with version control systems. 525

Including a Dockerfile alongside your code and data is an effective way to consistently 526

build your software, to show visitors to the repository how it is built and used, to solicit 527

feedback and collaborate with your peers, and to increase the impact and sustainability 528

of your work (cf. [48]). 529

Most importantly, you should publish all files COPYied into the image, e.g., test data 530

or files for software installation from source (see Rule 7), in the same public repository 531

as the Dockerfile, e.g., in a research compendium. If you prefer to edit your scripts 532

more interactively in a running container (e.g., using Jupyter) then it may be more 533

November 10, 2020 14/24

https://docs.docker.com/engine/reference/builder/#user

convenient to bind mount their directory from the host at run time, provided all 534

changes are commited before sharing. 535

Online collaboration platforms (e.g., GitHub, GitLab) also make it easy to use CI 536

services to test building and executing your image in an independent environment. CI 537

increases stability and trust, and it allows for images to be published automatically. 538

Automation strategies exist to build and test images for multiple platforms and software 539

versions, even with CI. Such approaches are often used when developing popular 540

software packages for a broad user base operating across a wide range of target 541

platforms and environments, and they can be leveraged if you expect your workflow to 542

fall into this category. Furthermore, the commit messages in your version-controlled 543

repository preserve a record of all changes to the Dockerfile, and you can use the 544

same versions in tags for both the container’s image and the git repository. 545

Rule 7: Mount datasets at run time 546

The role of containers is to provide the computing environment, not to encapsulate 547

(potentially very large) datasets. It is better to insert large data files from the local 548

machine into the container at runtime, and use the image primarily for the software and 549

dependencies. This insertion is achieved by using bind mounts. Mounting these files is 550

preferable to using the ADD/COPY instructions in the Dockerfile, because files persist 551

when the container instance or image is removed from your system, and the files are 552

more accessible when the workspace is published. If you want to add local files to the 553

container, (and do not need ADD’s extra features) we recommend COPY because it is 554

simpler and explicit. Volumes are useful for persisting changes across runs of a container 555

and offer faster file I/O compared to other mounting methods (particularly useful with 556

databases for example). However they are less suitable for reproducibility, since these 557

changes exist within the image (making them less in line with treating containers as 558

ephemeral see Rule 10) and are not so easy to access or place under version control. 559

Unless specific features are needed, bind mounts are preferable to storage volumes since 560

the contents are directly accessible from both the container and the host. The files can 561

also be more easily included in the same repository. 562

Storing data files outside of the container allows handling of very large or sensitive 563

datasets, e.g., proprietary data or private information. Do not include such data in an 564

image! To avoid publishing sensitive data by accident, you can add the data directory 565

to the .dockerignore file, which excludes files and directories from the build context, 566

i.e., the set of files considered by docker build. Ignoring data files also speeds up the 567

build in cases where there are very large files or many small files. As an exception, you 568

should include dummy or small test datasets in the image to ensure that a container is 569

functional without the actual dataset, e.g., for automated tests, instructions in the user 570

manual, or peer review (see also “functional testing logic” in [12]). For all these cases, 571

you should provide clear instructions in the README file on how to use the actual (or 572

dummy) data, and how to obtain and mount it if it is kept outside of the image. When 573

publishing your workspace, e.g., on Zenodo, having datasets outside of the container 574

also makes them more accessible to others, for example for reuse or analysis. 575

A mount can also be used to access output data from a container; this can be an 576

extra mount or the same data directory. Alternatively, you can use the docker cp 577

command to access files from a running or stopped container, but this requires a specific 578

handling, e.g., naming the container when starting it or using multiple shells, which 579

requires very detailed instructions for users. 580

You can use the -v/--volume or preferably --mount flags to docker run to 581

configure bind mounts of directories or files, including options, as shown in the following 582

examples. If the target path exists within the image, the bind mount will replace it for 583

November 10, 2020 15/24

https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/engine/reference/builder/#add
https://docs.docker.com/storage/volumes/
https://docs.docker.com/engine/reference/commandline/build/#use-a-dockerignore-file
https://docs.docker.com/engine/reference/commandline/build/#extended-description
https://docs.docker.com/engine/reference/commandline/cp/

the started container. (Note, $HOME is an environment variable in UNIX systems 584

representing the path to the current user’s home directory, e.g., /home/moby, and 585

$(pwd) returns the current path.) 586

mount directory
docker run --mount type=bind,source=$HOME/project,target=/project mycontainer

mount directory as read-only
docker run --mount type=bind,src=$HOME/project,dst=/workspace,readonly mycontainer

mount multple directories, one with write access relative to current path (Linux)
docker run --mount type=bind,src=$(pwd)/article-x-supplement/data,dst=/input-data,readonly \

--mount type=bind,src=$(pwd)/outputs,dst=/output-data mycontainer

How your container expects external resources to be mounted into it should be 587

included in the example commands (see Rule 4). In these commands, you can also make 588

sure to avoid issues with file permissions by using Docker’s --user option. For example, 589

by default, writing a new file from inside the container will be owned by user root on 590

your host, because that is the default user within the container. 591

Rule 8: Make the image 1-click runnable 592

Containers are very well suited for day-to-day development tasks (see also Rule 10), 593

because they support common interactive environments for data science and software 594

development. But they are also useful for a “headless” execution of full workflows. For 595

example, [49] demonstrates a container for running an agent-based model with video 596

files as outputs, and this article’s R Markdown source, which included cells with 597

analysis code, is rendered into a PDF in a container. A workflow that does not support 598

headless execution may even be seen as irreproducible. 599

These 2 usages can be configured by the Dockerfile’s author and exposed to the 600

user based on the Dockerfile’s ENTRYPOINT and CMD instructions. An image’s main 601

purpose is reflected by the default process and configuration, though the ENTRYPOINT 602

and CMD can also be changed at runtime. It is considered good practice to have a 603

combination of default entrypoint and command that meets reasonable user 604

expectations. For example, a container known to be a workflow should execute the 605

entrypoint to the workflow and perhaps use --help as the command to print out usage. 606

The container entrypoint should not execute the workflow, as the user is likely to run 607

the container for basic inspection, and starting an analysis as a surprise that might write 608

files is undesired. As the maintainer of the workflow, you should write clear instructions 609

for how to properly interact with the container, both for yourself and others. A possible 610

weakness with using containers is that they can only provide one default entrypoint and 611

command. However, tools, e.g., The Scientific Filesystem [50], have been developed to 612

expose multiple entrypoints, environments, help messages, labels, and even install 613

sequences. With plain Docker, you can override the defaults as part of the docker run 614

command or in an extra Dockerfile using the primary image as a base, as shown in 615

Listing 5. In any case, you should document different variants very well and potentially 616

capture build and run commands in a Makefile [27]. If you use a Makefile, then keep 617

it in the same repository (see Rule 7) and include instructions for its usage (see Rule 4). 618

To support more complex configuration options, it is helpful to expose settings via a 619

configuration file, which can be bind mounted from the host [49], via environment 620

variables (see Rule 4 and [51]), or via wrappers using Docker, such as Kliko [52]. 621

November 10, 2020 16/24

https://rmarkdown.rstudio.com/
https://github.com/nuest/ten-simple-rules-dockerfiles/blob/master/.travis.yml#L18

Listing 5. Workflow Dockerfile and derived "runner image" Dockerfile with file
name Dockerfile.runner.
- - - - - File : Dockerfile -

base image (interactive)
FROM jupyter / datascience - notebook : python - 3 . 7 . 6

Usage i nst ruc tio ns :
docker build - - tag workflow :1.0 .
docker run workflow :1.0

- - - - - File : Dockerfile . runner -
interactive image
FROM workflow : 1 . 0

ENTRYPOINT [" python "]
CMD [" / workspace / run - all . sh "]

Usage i nst ruc tio ns :
docker build - - tag workflow - runner :1.0 - - file Dockerfile . runner .
docker run - e ITERATIONS =10 - e ALGORITHM = advanced \
- - volume / tmp / results :/ workspace / output_data workflow - runner :1.0

622

Interactive graphical interfaces, such as RStudio, Jupyter, or Visual Studio Code, 623

can run in a container to be used across operating systems and both locally and 624

remotely via a regular web browser. The HTML-based user interface is exposed over 625

HTTP. Use the EXPOSE instruction to document the ports of interest for both humans 626

and tools, because they need to be bound to the host to be accessible to the user using 627

the docker run option -p/--publish <host port>:<container port>. The 628

container should also print to the screen of the used ports along with any login 629

credentials needed. For example, this is done in the last few lines of the output of 630

running a Jupyter Notebook server locally (lines abbreviated): 631

docker run -p 8888:8888 jupyter/datascience-notebook:7a0c7325e470

[...] 632

[I 15:44:31.323 NotebookApp] The Jupyter Notebook is running at: 633

[I 15:44:31.323 NotebookApp] http://9027563c6465:8888/?token=6a92d [..] 634

[I 15:44:31.323 NotebookApp] or http://127.0.0.1:8888/?token=6a92 [..] 635

[I 15:44:31.323 NotebookApp] Use Control-C to stop this server and [..] 636

A person who is unfamiliar with Docker but wants to use your image may rely on 637

graphical tools like ContainDS, Portainer, or the Docker Desktop Dashboard for 638

assistance in managing containers on their machine without using the Docker CLI. Such 639

tools will often detect exposed ports and declared volumes so as to make the user aware 640

of them. 641

Interactive usage of a command-line interface is quite straightforward to access from 642

containers, if users are familiar with this style of user interface. Running the container 643

will provide a shell where a tool can be used and where help or error messages can assist 644

the user. For example, complex workflows in any programming language can, with 645

suitable pre-configuration, be triggered by running a specific script file. If your workflow 646

can be executed via a command line client, you may use that to validate correct 647

functionality of an image in automated builds, e.g., by using a small toy example and 648

checking the output by checking successful responses from HTTP endpoints provided by 649

the container, such as with an HTTP response code of 200, or by using a browser 650

automation tool such as Selenium [53]. 651

The following example runs a simple R command counting the lines in this article’s 652

source file. The file path is passed as an environment variable. 653

November 10, 2020 17/24

https://rstudio.com/products/rstudio/
https://jupyter.org/
https://code.visualstudio.com/
https://containds.com/
https://www.portainer.io/
https://docs.docker.com/desktop/dashboard/

Listing 6. Passing a parameter via environment variable; working code in example
‘pass-parameter-env‘, see Examples.
docker run \

- - env CONFIG_PARAM="/data/ten- simple - rules - dockerfiles .Rmd" \
- - volume $ (pwd) : / data \
jupyter / datascience - notebook : 7 a0c7325e470 \
R - - quiet - e "l = length (readLines (Sys. getenv (’ CONFIG_PARAM ’))); \

print (paste (’ Number of lines : ’, l))"

> l = length (readLines (Sys . getenv (’CONFIG_PARAM ’))) ;
> print (paste (’Number of lines : ’ , l))
[1] " Number of lines : 568"

654

If there is only a regular desktop application, the host’s window manager can be 655

connected to the container. Although this raises notable security issues, they can be 656

addressed by using the “X11 forwarding” natively supported by Singularity [54], which 657

can execute Docker containers, or by leveraging supporting tools such as x11docker [55]. 658

Other alternatives include bridge containers [56] and exposing a regular desktop via the 659

browser (e.g., for Jupyter Hub [57]). This variety of approaches renders seemingly more 660

convenient uncontainerised environments unnecessary. Just using one’s local machine is 661

only slightly more comfortable but much less reproducible and portable. 662

Rule 9: Order the instructions 663

You will regularly build an image during development of your workflow. You can take 664

advantage of build caching to avoid execution of time-consuming instructions, e.g., 665

install from a remote resource or copying a file that gets cached. Therefore, you should 666

keep instructions in order of least likely to change to most likely to change. Docker will 667

execute the instructions in the order that they appear in the Dockerfile; when one 668

instruction is completed, the result is cached, and the build moves to the next one. If 669

you change something in the Dockerfile and rebuild the image, each instruction is 670

inspected in turn. If it has not changed, the cached layer is used and the build 671

progresses. Conversely, if the line has changed, that build step is executed afresh, and 672

then every subsequent instruction will have to be executed in case the changed line 673

influences a later instruction. You should regularly re-build the image using the 674

--no-cache option to learn about broken instructions as soon as possible (cf. Rule 10; 675

as an aside, docker image prune --all is a good way to remove unused images, as 676

these tend to accrue silently in your system and take up significant disk space). Such a 677

re-build is also a good occasion to revisit the order of instructions, e.g., if you appended 678

an instruction at the end to save time while iteratively developing the Dockerfile, and 679

the formatting. You can add a version tag to the image before the re-build to make sure 680

to keep a working environment at hand. A recommended ordering based on these 681

considerations is as follows, and you can use comments to visually separate these 682

sections in your file (cf. Listing 1): 683

1. System libraries 684

2. Language-specific libraries or modules 685

1. from repositories (i.e., binaries) 686

2. from source (e.g., GitHub) 687

3. Installation of your own software and scripts (if not mounted) 688

4. Copying data and configuration files (if not mounted) 689

5. Labels 690

6. Entrypoint and default command 691

November 10, 2020 18/24

Rule 10: Regularly use and rebuild containers 692

Using containers for research workflows requires not only technical understanding but 693

also an awareness of risks that can be managed effectively by following a number of 694

good habits, discussed in this section. While there is no firm rule, if you use a 695

container daily, is good practice to rebuild that container every 1 or 2 weeks; this helps 696

identify breaking changes early and prevents multiple issues compounding on each other. 697

At the time of publication of research results, it is good practice to save a copy of the 698

image in a public data repository so that readers of the publication can access the 699

resources that produced the published results. 700

First, it is a good habit to use your container every time you work on a project and 701

not just as a final step during publication. If the container is the only platform you use, 702

you can be highly confident that you have properly documented the computing 703

environment [58]. You should prioritise this usage over others, e.g., non-interactive 704

execution of a full workflow, because it gives you personally the highest value and does 705

not limit your use or others’ use of your data and code at all (see Rule 8). 706

Second, for reproducibility, we can treat containers as transient and disposable, and 707

even intentionally rebuild an image at regular intervals. Ideally, containers that we built 708

years ago should rebuild seamlessly, but this is not necessarily the case, especially with 709

rapidly changing technology relevant to machine learning and data science. Habitually 710

deleting a container and performing a cache-less rebuild of the image (a) increases 711

security due to updating underlying software; (b) helps to reveal issues requiring manual 712

intervention, e.g., changes to code or configuration that are not documented in the 713

Dockerfile but perhaps should be; and (c) allows you to more incrementally debug 714

issues. This habit can be supported by using continuous deployment or CI strategies. 715

In case you need a setup or configuration for the first 2 habits, it is good practice to 716

provide a Makefile alongside your Dockerfile, which can capture the specific 717

commands. Furthermore, when you rebuild the image, you can take a fresh look at the 718

Dockerfile and improve it over time, because it will be hard to apply all rules at once. 719

Various linting tools, either on the command line [59] or as a web service [60], are 720

available and can be integrated into your workflow. 721

Third, you can export the image to file and deposit it in a public data repository, 722

where it not only becomes citable but also provides a snapshot of the actual environment 723

you used at a specific point in time. You should include instructions for how to import 724

and run the workflow based on the image archive and add your own image tags using 725

semantic versioning (see Rule 2) for clarity. Depositing the image next to other project 726

files, i.e., data, code, and the used Dockerfile, in a public repository makes them likely 727

to be preserved, but it is highly unlikely that over time you will be able to recreate it 728

precisely from the accompanying Dockerfile. Publishing the image and the contained 729

metadata therein (e.g., the Docker version used) may even allow future science 730

historians to emulate the Docker environment. Sharing the actual image via a registry 731

and a version-controlled Dockerfile together allows you to freely experiment and 732

continue developing your workflow and keep the image up to date, e.g., updating 733

versions of pinned dependencies (see Rule 5) and regular image building (see above). 734

Finally, for a sanity check and to foster even higher trust in the stability and 735

documentation of your project, you can ask a colleague or community member to be 736

your code copilot (see https://twitter.com/Code_Copilot) to interact with your 737

workflow container on a machine of their own. You can do this shortly before 738

submitting your reproducible workflow for peer-review, so you are well positioned for 739

the future of scholarly communication and open science, where these may be standard 740

practices required for publication [21,61–63]. 741

November 10, 2020 19/24

https://twitter.com/Code_Copilot

Examples 742

To demonstrate the 10 rules, we maintain a collection of annotated example 743

Dockerfiles in the examples directory of this article’s GitHub repository. The 744

Dockerfiles were mostly discovered in public repositories and updated to adhere 745

better to the rules; see https: 746

//github.com/nuest/ten-simple-rules-dockerfiles/tree/master/examples, 747

archived at https://doi.org/10.5281/zenodo.3878582. 748

Conclusions 749

In this article we have provided guidance for using Dockerfiles to create containers for 750

use and communication in smaller-scale data science research. Reproducibility in 751

research is an endeavour of incremental improvement and best efforts, not about 752

achieving the perfect solution; such a solution may be not achievable for many 753

researchers with limited resources, and its definition may change over time. Even if 754

imperfect, the effort to create and document scientific workflows provides incredibly 755

useful and valuable transparency for a project. We encourage researchers to follow these 756

steps taken by their peers to use Dockerfiles to practice reproducible research, and we 757

encourage them to change the way they communicate towards “preproducibility” [64], 758

which values openness, transparency and honesty to find fascinating problems and 759

advance science. So, we ask researchers, with their best efforts and with their current 760

knowledge, to strive to write readable Dockerfiles for functional containers that are 761

realistic about what might break and what is unlikely to break. In a similar vein, we 762

accept that researchers will freely break these rules if another approach makes more 763

sense for their use case. Also, we ask that researchers not overwhelm themselves by 764

trying to follow all the rules right away, but that they set up an iterative process to 765

increase their computing environment’s manageability over time. Most importantly, we 766

ask researchers to share and exchange their Dockerfiles freely and to collaborate in 767

their communities to spread the knowledge about containers as a tool for research and 768

scholarly collaboration and communication. 769

Acknowledgements 770

We thank Dav Clark who provided feedback on the preprint [65] and Celeste R. 771

Brennecka from the Scientific Editing Service of the University of Münster for her 772

editorial support. 773

References 774

1. Marwick B. How computers broke science – and what we can do to fix it [Internet]. 775

The Conversation. 2015. Available: https://theconversation.com/ 776

how-computers-broke-science-and-what-we-can-do-to-fix-it-49938 777

2. Donoho DL. An invitation to reproducible computational research. Biostatistics. 778

2010;11: 385–388. doi:10.1093/biostatistics/kxq028 779

3. Wilson G, Aruliah DA, Brown CT, Hong NPC, Davis M, Guy RT, et al. Best 780

Practices for Scientific Computing. PLOS Biology. 2014;12: e1001745. 781

doi:10.1371/journal.pbio.1001745 782

4. Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good enough 783

practices in scientific computing. PLOS Computational Biology. 2017;13: e1005510. 784

doi:10.1371/journal.pcbi.1005510 785

November 10, 2020 20/24

https://github.com/nuest/ten-simple-rules-dockerfiles/tree/master/examples
https://github.com/nuest/ten-simple-rules-dockerfiles/tree/master/examples
https://github.com/nuest/ten-simple-rules-dockerfiles/tree/master/examples
https://doi.org/10.5281/zenodo.3878582
https://theconversation.com/how-computers-broke-science-and-what-we-can-do-to-fix-it-49938
https://theconversation.com/how-computers-broke-science-and-what-we-can-do-to-fix-it-49938
https://theconversation.com/how-computers-broke-science-and-what-we-can-do-to-fix-it-49938
https://doi.org/10.1093/biostatistics/kxq028
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pcbi.1005510

5. Rule A, Birmingham A, Zuniga C, Altintas I, Huang S-C, Knight R, et al. Ten 786

simple rules for writing and sharing computational analyses in Jupyter Notebooks. 787

PLOS Computational Biology. 2019;15: e1007007. doi:10.1371/journal.pcbi.1007007 788

6. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for Reproducible 789

Computational Research. PLoS Comput Biol. 2013;9: e1003285. 790

doi:10.1371/journal.pcbi.1003285 791

7. Nüst D. Author Carpentry : Docker for reproducible research [Internet]. Author 792

Carpentry : Docker for reproducible research. 2017. Available: 793

https://nuest.github.io/docker-reproducible-research/ 794

8. Chapman P. Reproducible data science environments with Docker Phil 795

Chapman’s Blog [Internet]. 2018. Available: https://chapmandu2.github.io/post/ 796

2018/05/26/reproducible-data-science-environments-with-docker/ 797

9. rOpenSci Labs. R Docker tutorial [Internet]. 2015. Available: 798

https://ropenscilabs.github.io/r-docker-tutorial/ 799

10. Udemy, Zhbanko V. Docker Containers for Data Science and Reproducible 800

Research [Internet]. Udemy. 2019. Available: https://www.udemy.com/course/ 801

docker-containers-data-science-reproducible-research/ 802

11. Psomopoulos FE. Lesson "Docker and Reproducibility" in Workshop 803

"Reproducible analysis and Research Transparency" [Internet]. Reproducible analysis 804

and Research Transparency. 2017. Available: 805

https://reproducible-analysis-workshop.readthedocs.io/en/latest/8. 806

Intro-Docker.html 807

12. Gruening B, Sallou O, Moreno P, Veiga Leprevost F da, Ménager H, Søndergaard 808

D, et al. Recommendations for the packaging and containerizing of bioinformatics 809

software. F1000Research. 2019;7: 742. doi:10.12688/f1000research.15140.2 810

13. Docker Inc. Best practices for writing Dockerfiles [Internet]. Docker 811

Documentation. 2020. Available: https: 812

//docs.docker.com/develop/develop-images/dockerfile_best-practices/ 813

14. Vass T. Intro Guide to Dockerfile Best Practices [Internet]. Docker Blog. 2019. 814

Available: 815

https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/ 816

15. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for 817

mobility of compute. PLOS ONE. 2017;12: e0177459. doi:10.1371/journal.pone.0177459 818

16. Docker Inc. Overview of Docker Compose [Internet]. Docker Documentation. 819

2019. Available: https://docs.docker.com/compose/ 820

17. Nüst D, Konkol M, Pebesma E, Kray C, Schutzeichel M, Przibytzin H, et al. 821

Opening the Publication Process with Executable Research Compendia. D-Lib 822

Magazine. 2017;23. doi:10.1045/january2017-nuest 823

18. Cohen J, Katz DS, Barker M, Chue Hong NP, Haines R, Jay C. The Four Pillars 824

of Research Software Engineering. IEEE Software. 2020; doi:10.1109/MS.2020.2973362 825

19. Wikipedia contributors. Docker (software) [Internet]. Wikipedia. 2019. 826

Available: https: 827

//en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=928441083 828

20. Boettiger C, Eddelbuettel D. An Introduction to Rocker: Docker Containers for 829

R. The R Journal. 2017;9: 527–536. doi:10.32614/RJ-2017-065 830

21. Chen X, Dallmeier-Tiessen S, Dasler R, Feger S, Fokianos P, Gonzalez JB, et al. 831

Open is not enough. Nature Physics. 2019;15: 113. doi:10.1038/s41567-018-0342-2 832

22. Brinckman A, Chard K, Gaffney N, Hategan M, Jones MB, Kowalik K, et al. 833

Computing environments for reproducibility: Capturing the “Whole Tale”. Future 834

Generation Computer Systems. 2018; doi:10.1016/j.future.2017.12.029 835

23. Code Ocean [Internet]. 2019. Available: https://codeocean.com/ 836

24. Šimko T, Heinrich L, Hirvonsalo H, Kousidis D, Rodríguez D. REANA: A 837

November 10, 2020 21/24

https://doi.org/10.1371/journal.pcbi.1007007
https://doi.org/10.1371/journal.pcbi.1003285
https://nuest.github.io/docker-reproducible-research/
https://chapmandu2.github.io/post/2018/05/26/reproducible-data-science-environments-with-docker/
https://chapmandu2.github.io/post/2018/05/26/reproducible-data-science-environments-with-docker/
https://chapmandu2.github.io/post/2018/05/26/reproducible-data-science-environments-with-docker/
https://ropenscilabs.github.io/r-docker-tutorial/
https://www.udemy.com/course/docker-containers-data-science-reproducible-research/
https://www.udemy.com/course/docker-containers-data-science-reproducible-research/
https://www.udemy.com/course/docker-containers-data-science-reproducible-research/
https://reproducible-analysis-workshop.readthedocs.io/en/latest/8.Intro-Docker.html
https://reproducible-analysis-workshop.readthedocs.io/en/latest/8.Intro-Docker.html
https://reproducible-analysis-workshop.readthedocs.io/en/latest/8.Intro-Docker.html
https://doi.org/10.12688/f1000research.15140.2
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://doi.org/10.1371/journal.pone.0177459
https://docs.docker.com/compose/
https://doi.org/10.1045/january2017-nuest
https://doi.org/10.1109/MS.2020.2973362
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=928441083
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=928441083
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=928441083
https://doi.org/10.32614/RJ-2017-065
https://doi.org/10.1038/s41567-018-0342-2
https://doi.org/10.1016/j.future.2017.12.029
https://codeocean.com/

System for Reusable Research Data Analyses. EPJ Web of Conferences. 2019;214: 838

06034. doi:10.1051/epjconf/201921406034 839

25. Project Jupyter, Bussonnier M, Forde J, Freeman J, Granger B, Head T, et al. 840

Binder 2.0 - Reproducible, interactive, sharable environments for science at scale. 841

Proceedings of the 17th Python in Science Conference. 2018; 113–120. 842

doi:10.25080/Majora-4af1f417-011 843

26. Docker Inc. Dockerfile reference [Internet]. Docker Documentation. 2019. 844

Available: https://docs.docker.com/engine/reference/builder/ 845

27. Wikipedia contributors. Make (software) [Internet]. Wikipedia. 2019. Available: 846

https: 847

//en.wikipedia.org/w/index.php?title=Make_(software)&oldid=929976465 848

28. Boettiger C. An Introduction to Docker for Reproducible Research. SIGOPS 849

Oper Syst Rev. 2015;49: 71–79. doi:10.1145/2723872.2723882 850

29. Ben Marwick. 1989-excavation-report-Madjebebe. 2015; 851

doi:10.6084/m9.figshare.1297059 852

30. Docker Inc. Official Images on Docker Hub [Internet]. Docker Documentation. 853

2019. Available: https://docs.docker.com/docker-hub/official_images/ 854

31. Nüst D, Hinz M. Containerit: Generating Dockerfiles for reproducible research 855

with R. Journal of Open Source Software. 2019;4: 1603. doi:10.21105/joss.01603 856

32. Stencila. Stencila/dockta [Internet]. Stencila; 2019. Available: 857

https://github.com/stencila/dockta 858

33. {Cookiecutter contributors}. Cookiecutter/cookiecutter [Internet]. cookiecutter; 859

2019. Available: https://github.com/cookiecutter/cookiecutter 860

34. Marwick B. Benmarwick/rrtools [Internet]. 2019. Available: 861

https://github.com/benmarwick/rrtools 862

35. Docker Inc. Official Images on Docker Hub [Internet]. Docker Documentation. 863

2020. Available: https://docs.docker.com/docker-hub/official_images/ 864

36. Halchenko YO, Hanke M. Open is Not Enough. Let’s Take the Next Step: An 865

Integrated, Community-Driven Computing Platform for Neuroscience. Frontiers in 866

Neuroinformatics. 2012;6. doi:10.3389/fninf.2012.00022 867

37. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. 868

Welcome to the tidyverse. Journal of Open Source Software. The Open Journal; 2019;4: 869

1686. doi:10.21105/joss.01686 870

38. Preston-Werner T. Semantic Versioning 2.0.0 [Internet]. Semantic Versioning. 871

2013. Available: https://semver.org/ 872

39. Docker Inc. Use multi-stage builds [Internet]. Docker Documentation. 2020. 873

Available: 874

https://docs.docker.com/develop/develop-images/multistage-build/ 875

40. Goodman A. Wagoodman/dive [Internet]. 2019. Available: 876

https://github.com/wagoodman/dive 877

41. Opencontainers. Opencontainers/image-spec v1.0.1 - Annotations [Internet]. 878

GitHub. 2017. Available: 879

https://github.com/opencontainers/image-spec/blob/v1.0.1/annotations.md 880

42. The Python Software Foundation. Requirements Files — pip User Guide 881

[Internet]. 2019. Available: 882

https://pip.pypa.io/en/stable/user_guide/#requirements-files 883

43. Continuum Analytics. Managing environments — conda documentation 884

[Internet]. 2017. Available: https://docs.conda.io/projects/conda/en/latest/ 885

user-guide/tasks/manage-environments.html 886

44. R Core Team. The DESCRIPTION file in "writing r extensions" [Internet]. 1999. 887

Available: https://cran.r-project.org/doc/manuals/r-release/R-exts.html# 888

The-DESCRIPTION-file 889

November 10, 2020 22/24

https://doi.org/10.1051/epjconf/201921406034
https://doi.org/10.25080/Majora-4af1f417-011
https://docs.docker.com/engine/reference/builder/
https://en.wikipedia.org/w/index.php?title=Make_(software)&oldid=929976465
https://en.wikipedia.org/w/index.php?title=Make_(software)&oldid=929976465
https://en.wikipedia.org/w/index.php?title=Make_(software)&oldid=929976465
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.6084/m9.figshare.1297059
https://docs.docker.com/docker-hub/official_images/
https://doi.org/10.21105/joss.01603
https://github.com/stencila/dockta
https://github.com/cookiecutter/cookiecutter
https://github.com/benmarwick/rrtools
https://docs.docker.com/docker-hub/official_images/
https://doi.org/10.3389/fninf.2012.00022
https://doi.org/10.21105/joss.01686
https://semver.org/
https://docs.docker.com/develop/develop-images/multistage-build/
https://github.com/wagoodman/dive
https://github.com/opencontainers/image-spec/blob/v1.0.1/annotations.md
https://pip.pypa.io/en/stable/user_guide/#requirements-files
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#The-DESCRIPTION-file
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#The-DESCRIPTION-file
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#The-DESCRIPTION-file

45. Eddelbuettel D, Horner J. Littler: R at the command-line via ’r’ [Internet]. 2019. 890

Available: https://CRAN.R-project.org/package=littler 891

46. npm. Creating a package.json file npm Documentation [Internet]. 2019. 892

Available: https://docs.npmjs.com/creating-a-package-json-file 893

47. The Julia Language Contributors. 10. Project.Toml and Manifest.Toml · Pkg.Jl 894

[Internet]. 2019. Available: https://julialang.github.io/Pkg.jl/v1/toml-files/ 895

48. Emsley I, De Roure D. A Framework for the Preservation of a Docker Container 896

International Journal of Digital Curation. International Journal of Digital Curation. 897

2018;12. doi:10.2218/ijdc.v12i2.509 898

49. Verstegen JA. JudithVerstegen/PLUC_Mozambique: First release of PLUC for 899

Mozambique [Internet]. Zenodo; 2019. doi:10.5281/zenodo.3519987 900

50. Sochat V. The Scientific Filesystem. GigaScience. 2018;7. 901

doi:10.1093/gigascience/giy023 902

51. Knoth C, Nüst D. Reproducibility and Practical Adoption of GEOBIA with 903

Open-Source Software in Docker Containers. Remote Sensing. 2017;9: 290. 904

doi:10.3390/rs9030290 905

52. Molenaar G, Makhathini S, Girard JN, Smirnov O. Kliko—The scientific 906

compute container format. Astronomy and Computing. 2018;25: 1–9. 907

doi:10.1016/j.ascom.2018.08.003 908

53. Selenium contributors. SeleniumHQ/selenium [Internet]. Selenium; 2019. 909

Available: https://github.com/SeleniumHQ/selenium 910

54. Singularity. Frequently Asked Questions Singularity [Internet]. 2019. Available: 911

http://singularity.lbl.gov/archive/docs/v2-2/faq# 912

can-i-run-x11-apps-through-singularity 913

55. Viereck M. X11docker: Run GUI applications in Docker containers. Journal of 914

Open Source Software. 2019;4: 1349. doi:10.21105/joss.01349 915

56. Yaremenko E. JAremko/docker-x11-bridge [Internet]. 2019. Available: 916

https://github.com/JAremko/docker-x11-bridge 917

57. Panda Y. Yuvipanda/jupyter-desktop-server [Internet]. 2019. Available: 918

https://github.com/yuvipanda/jupyter-desktop-server 919

58. Marwick B. README of 1989-excavation-report-Madjebebe. 2015; 920

doi:10.6084/m9.figshare.1297059 921

59. A rule-based linter for dockerfiles [Internet]. 2020. Available: 922

https://github.com/projectatomic/dockerfile_lint 923

60. Dockerfile linter [Internet]. 2020. Available: 924

https://hadolint.github.io/hadolint/ 925

61. Eglen S, Nüst D. CODECHECK: An open-science initiative to facilitate sharing 926

of computer programs and results presented in scientific publications. Septentrio 927

Conference Series. 2019; doi:10.7557/5.4910 928

62. Schönbrodt F. Training students for the Open Science future. Nature Human 929

Behaviour. 2019;3: 1031–1031. doi:10.1038/s41562-019-0726-z 930

63. Eglen SJ, Mounce R, Gatto L, Currie AM, Nobis Y. Recent developments in 931

scholarly publishing to improve research practices in the life sciences. Emerging Topics 932

in Life Sciences. 2018;2: 775–778. doi:10.1042/ETLS20180172 933

64. Stark PB. Before reproducibility must come preproducibility [Internet]. Nature. 934

2018. doi:10.1038/d41586-018-05256-0 935

65. Nüst D, Sochat V, Marwick B, Eglen S, Head T, Hirst T. Ten Simple Rules for 936

Writing Dockerfiles for Reproducible Data Science [Internet]. Open Science Framework; 937

2020 Apr. doi:10.31219/osf.io/fsd7t 938

November 10, 2020 23/24

https://CRAN.R-project.org/package=littler
https://docs.npmjs.com/creating-a-package-json-file
https://julialang.github.io/Pkg.jl/v1/toml-files/
https://doi.org/10.2218/ijdc.v12i2.509
https://doi.org/10.5281/zenodo.3519987
https://doi.org/10.1093/gigascience/giy023
https://doi.org/10.3390/rs9030290
https://doi.org/10.1016/j.ascom.2018.08.003
https://github.com/SeleniumHQ/selenium
http://singularity.lbl.gov/archive/docs/v2-2/faq#can-i-run-x11-apps-through-singularity
http://singularity.lbl.gov/archive/docs/v2-2/faq#can-i-run-x11-apps-through-singularity
http://singularity.lbl.gov/archive/docs/v2-2/faq#can-i-run-x11-apps-through-singularity
https://doi.org/10.21105/joss.01349
https://github.com/JAremko/docker-x11-bridge
https://github.com/yuvipanda/jupyter-desktop-server
https://doi.org/10.6084/m9.figshare.1297059
https://github.com/projectatomic/dockerfile_lint
https://hadolint.github.io/hadolint/
https://doi.org/10.7557/5.4910
https://doi.org/10.1038/s41562-019-0726-z
https://doi.org/10.1042/ETLS20180172
https://doi.org/10.1038/d41586-018-05256-0
https://doi.org/10.31219/osf.io/fsd7t

Fig 2. The workflow to create Docker containers by analogy. Containers begin with a
Dockerfile, a recipe for building the computational environment (analogous to source
code in a compiled programming language). This is used to build an image with the
docker build command, analogous to compiling the source code into an executable
(binary) file. Finally, the image is used to launch one or more containers with the
docker run command (analogous to running an instance of the compiled binary as a
process).

November 10, 2020 24/24

	Introduction
	Prerequisites & scope
	Docker and Dockerfiles
	Rule 1: Use available tools
	Tools for container generation
	Tools for templating

	Rule 2: Build upon existing images
	Use version-specific tags

	Rule 3: Format for clarity
	Rule 4: Document within the Dockerfile
	Explain in comments
	Add metadata as labels
	Define versions, parameters, and paths once
	Include usage instructions

	Rule 5: Specify software versions
	System libraries
	Version Control
	Extension packages and programming language modules

	Rule 6: Use version control
	Rule 7: Mount datasets at run time
	Rule 8: Make the image 1-click runnable
	Rule 9: Order the instructions
	Rule 10: Regularly use and rebuild containers
	Examples
	Conclusions
	Acknowledgements
	References

